Characterization of Interface and Bulk Traps in Ultrathin Atomic Layer-Deposited Oxide Semiconductor MOS Capacitors With HfO$_2$/In$_2$O$_3$ Gate Stack by C-V and Conductance Method

Ziheng Wang1, Zehao Lin2, Mengwei Si1* and Peide D. Ye2*

1Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China. 2School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, United States

Oxide semiconductors have attracted revived interest for complementary metal–oxide–semiconductor (CMOS) back-end-of-line (BEOL) compatible devices for monolithic 3-dimensional (3D) integration. To obtain a high-quality oxide/semiconductor interface and bulk semiconductor, it is critical to enhance the performance of oxide semiconductor transistors. Atomic layer-deposited (ALD) indium oxide (In$_2$O$_3$) has been reported with superior performance such as high drive current, high mobility, steep subthreshold slope, and ultrathin channel. In this work, the interface and bulk traps in the MOS gate stack of ALD In$_2$O$_3$ transistors are systematically studied by using the C–V and conductance method. A low EOT of 0.93 nm is achieved directly from the accumulation capacitance in C–V measurement, indicating a high-quality gate oxide and oxide/semiconductor interface. Defects in bulk In$_2$O$_3$ with energy levels in the subgap are confirmed to be responsible for the conductance peak in G/ω versus ω curves by TCAD simulation of C–V and G–V characteristics. A high n-type doping of $1\times10^{20}/cm^3$ is extracted from C–V measurement. A high subgap density of states (DOS) of $3.3\times10^{20} \text{cm}^{-3} \text{eV}^{-1}$ is achieved using the conductance method, which contributes to the high n-type doping and high electron density. The high n-type doping further confirms the capability of channel thickness scaling because the charge neutrality level aligns deeply inside the conduction band.

Keywords: indium oxide, oxide semiconductors, thin-film transistors, atomic layer deposition, interface and bulk traps, conductance method

INTRODUCTION

Oxide semiconductors (Nomura et al., 2004; Kamiya et al., 2010) are widely used in thin-film transistors (TFTs) as channel materials and are considered as promising candidates for complementary metal–oxide–semiconductor (CMOS) back-end-of-line (BEOL) compatible transistors for monolithic three-dimensional (3D) integration. Indium oxide (In$_2$O$_3$) (Si et al., 2021a; Si et al., 2021b; Si et al., 2021c; Si et al., 2021d) or doped In$_2$O$_3$ (Matsubayashi et al., 2015; Li...
et al., 2019; Chakraborty et al., 2020; Fujiwara et al., 2020; Li et al., 2020; Samanta et al., 2020; Han et al., 2021) deposited by both sputtering and atomic layer deposition (ALD) are being investigated due to high mobility, low variability, wide bandgap, and high stability. Recently, ALD-based oxide semiconductors have attracted much attention due to the atomically smooth surface, low thermal budget, precise thickness control down to sub-1 nm, and capability of depositing a conformal film on 3D structures, achieving high-performance devices with maximum drain current >2 A/mm, high electron mobility >100 cm2/Vs, high on/off ratio $>10^{10}$, and near-ideal subthreshold slope (SS) down to 63.8 mV/dec at room temperature, making them leading candidates as channel semiconductors for monolithic 3D integration (Si et al., 2021a; Si et al., 2021b; Si et al., 2021c; Si et al., 2021d).

In$_2$O$_3$ has a charge neutrality level (CNL) at above 0.4 eV above the conduction band (E$_C$). It was understood that this is the origin of high electron density and low contact resistance in an atomically thin channel (Si et al., 2021a). Such high electron density is directly associated with the subgap density of states (DOS) in In$_2$O$_3$. Meanwhile, in oxide semiconductor-based transistors, the electrical performance and reliability are closely connected with the subgap DOS over the bandgap. Therefore, it is important to extract and study the impact of trap states. However, the interface and bulk traps in ultrathin ALD oxide semiconductor devices have not been systematically studied. Capacitance–voltage (C–V) measurements and the conductance method are commonly used to extract interface trap density (D$_{it}$) in MOS capacitors, which is used to evaluate the characteristics of interface and bulk traps in ALD In$_2$O$_3$ MOS capacitors.

In this work, the interface and bulk traps in the MOS gate stack of ALD In$_2$O$_3$ transistors are systematically studied by using the C–V and conductance method. ALD In$_2$O$_3$ transistors and MOS capacitors with 3.5 nm HfO$_2$ as the gate insulator and 3.5 nm In$_2$O$_3$ as the channel semiconductor are fabricated, achieving a low equivalent oxide thickness (EOT) of 0.93 nm, indicating a high-quality gate oxide and oxide/semiconductor interface. The C–V and conductance method were utilized to study the properties of interface and bulk trap states in the gate stack of In$_2$O$_3$ transistors. A high n-type doping of 1×10^{20}/cm3 is achieved by C–V measurement. This is further confirmed by the high conductance peak of 7.6×10^{-6} S s/cm2, corresponding to a high subgap DOS of 3.3×10^{20} cm$^{-3}$ eV$^{-1}$, which contributes to the high n-type doping and high electron density. The high electron density is because CNL aligns deeply inside the E$_C$, which is speculated to be related to In atoms, thus In-based semiconductors tend to have a high electron density. TCAD simulation is used to study the impact of the interface traps and bulk traps on C–V curves and conductance peaks of the MOS capacitors. It is found that bulk traps across the ultrathin body contribute to the large frequency dispersion in high V$_{GS}$ and the large conductance peak in G$_p$/ω versus ω characteristics.
EXPERIMENTS

Figures 1A,B show the schematic diagram of an ALD In$_2$O$_3$ transistor and an MOS capacitor with the same gate stack fabricated together with the transistor. The gate stack contains 40 nm Ni as the gate metal, 3.5 nm HfO$_2$ as the gate insulator, 3.5 nm In$_2$O$_3$ as the semiconductor channel, and 80 nm Ni as the source/drain (S/D) contacts. The area of MOS capacitors used in this work is 60 μm by 60 μm. The detailed fabrication process of the In$_2$O$_3$ transistors is similar to that used in Si et al. (2021c). The fabrication process starts with a standard cleaning of the p + Si substrate with 90 nm SiO$_2$ grown thermally for device isolation. Then a bilayer photoresist lithography process is conducted for the sharp lift-off of the 40 nm Ni gate metal by e-beam evaporation. 3.5 nm HfO$_2$ was then deposited by ALD at 200°C, using [(CH$_3$)$_2$N]$_4$Hf (TDMAHf) and H$_2$O as Hf and O precursors. Then, 3.5 nm In$_2$O$_3$ was also deposited by ALD at 225°C, using (CH$_3$)$_3$In (TMIn) and H$_2$O as In and O precursors and N$_2$ as the carrier gas. After that, 80 nm Ni was deposited by e-beam evaporation as S/D contacts, patterned by electron beam lithography. The overlap between the gate and S/D electrodes is 2 μm. The devices were annealed in O$_2$ at 200°C for 4 min. No obvious interdiffusion between HfO$_2$/In$_2$O$_3$ and In$_2$O$_3$/Ni is observed in a high-resolution transmission electron microscope (HRTEM), at least at the resolution of \simnm, as demonstrated in our previous work (Si et al., 2022) using a similar process. I–V measurements were performed using a Keysight B1500 semiconductor analyzer, while C–V and conductance measurements were conducted using an Agilent E4980A LCR meter.

The simulations were conducted on the gate stack capacitor to investigate the effects of trap states using TCAD tools. A two-
dimensional gate stack capacitor, with 3.5 nm HfO₂ as the gate dielectric, 3.5 nm In₂O₃ as the semiconductor, and Ni as the top and bottom electrodes, was used for the TCAD simulation, which is the same as the Ni/In₂O₃/HfO₂/Ni capacitor used in the experiment. During simulation, all structural dimensions and material parameters were kept unchanged. Some typical physical models for MOS capacitor simulation were utilized. To be specific, the CVT transverse field-dependent mobility model and a lateral electric field-dependent model were used for electrons and holes by specifying CVT and FLDMOB, respectively, in the model statement, while Auger recombination was also considered by specifying Auger in the model statement. In addition, the defects model and int defects model were also used to specify interface trap states at the In₂O₃/HfO₂ interface and bulk trap states in the In₂O₃ layer, respectively. For both bulk traps and interface traps, one tail distribution of acceptor-like traps at the conduction band edge, one tail distribution of donor-like traps at the valence band edge, and one deep-level Gaussian distribution of traps were specified (Kamiya et al., 2010; Jankovic, 2012), with NTA, NTD, and NGA to determine the peak density of these three types of traps, respectively. All traps are uniformly distributed in space, for both interface and bulk traps. C–V and G–V characteristics of the MOS capacitor were simulated to investigate the impacts of interface traps and bulk traps.

RESULTS AND DISCUSSION

Figure 2A shows the I₉–V₉₉ characteristics at V₉₉ of 0.05 and 1 V of an ALD In₂O₃ transistor with a channel length (Lch) of 1 μm and a channel thickness (Tch) of 3.5 nm. The gate leakage current (I₉) is also presented in Figure 2A, which is relatively high due to the highly scaled EOT, resulting in the relatively low on/off ratio and large subthreshold slope (SS). SS down to 63.8 mV/dec was achieved on ALD In₂O₃ transistors at room temperature, corresponding to a low D₉ of 6.3 × 10⁻¹⁴ cm⁻² eV⁻¹ (Si et al., 2021b). The on/off ratio and SS of the device can be further improved by threshold voltage (V₉) engineering. Field-effect mobility (μₑₑ) is extracted at V₉ of 0.05 V using maximum g₉ to be 46 cm²/V·s. Figure 2B shows the I₉–V₉₉ characteristics at V₉₉ from −2 to 2 V of the same ALD In₂O₃ transistor as in Figure 2A. A maximum drain current of 903 μA/μm is achieved at V₉₉ of 3 V, showing well-behaved I₉ saturation characteristics at high V₉₉ due to a drain side pinch-off.

The transport properties of oxide semiconductors, especially indium–gallium–zinc oxide (IGZO), are known to be closely related to the defect states in the bandgap (subgap states) (Kamiya and Hosono, 2010). Here, C–V and G–V methods were adopted to study the characteristics of these defect states in ALD In₂O₃ MOS capacitors. The top Ni electrode of the capacitor has no direct overlap with the p + Si substrate, and so the p + Si layer in the substrate will not show any parasitic role when measuring C–V characteristics. Figure 3A shows the C–V measurements of the gate stack capacitor fabricated together with the transistor in Figure 2, the structure of which is shown in Figure 1B. An accumulation capacitance of 3.7 μC/cm² is achieved, corresponding to an EOT of 0.93 nm. A dielectric constant of 15 for HfO₂ is achieved assuming that oxide capacitance (Cox) is close to the accumulation capacitance, suggesting a high-quality oxide/semiconductor interface. The large frequency dispersion at high V₉₉ is because of electron generation and recombination from the subgap defect states. The C–V curve also shows a minimum capacitance of 2.0 μC/cm² at low voltage. At low voltage, In₂O₃ is depleted so that the minimum capacitance can be estimated as Cox and the semiconductor capacitance (Cₛ) in series, where Cₛ = ϵₛε₀/Tₙₑₑ and ϵₛ is 8.85 × 10⁻¹⁴ F/cm as vacuum permittivity. As a result, Cₛ of 20 is obtained, which is higher than about 8.9 by optical measurement (Hamberg and Granqvist, 1986). The overestimation of Cₛ is caused by nonideal effects such as In₂O₃ at −1.5 V might not be fully depleted, Maxwell–Wagner effect, and the response from defect states.

The subgap defect states can be divided into two groups: shallow donors that contribute to the conducting electron or other defect states such as deep localized states (Jankovic, 2012). The doping concentration (Nₛ) can be extracted from 1/C² versus voltage characteristics according to Nₛ = 2qGr / ϵ₀ε₀(1/C²)dV (Schröder, 2006), where q is the elementary charge, and ϵₛ of 8.9 from optical measurement is used. Nₛ of 1 × 10¹⁹/cm³ is achieved, as shown in Figure 3B, which can be approximated as the density of shallow donor states. These defects are most likely to be oxygen vacancies as they are known to be shallow donors in oxide semiconductors such as IGZO (Jankovic, 2012). A 2D electron density (n₂D) considering Tₙₑₑ of 3.5 nm is calculated to be 3.5 × 10¹²/cm². Such a high n₂D also indicates a low D₉ at the oxide/semiconductor interface.

To evaluate the total density of subgap DOS, the conductance method is applied. Figure 3C shows the Gp versus voltage characteristics at different frequencies measured simultaneously with the C–V curve as in Figure 3A, where Gp decreases at high voltages suggesting that the impact of leakage current on Gp is small compared to the impact of trap states. Gp/ω versus ω characteristics are calculated from G–V data and Cox from C–V data, as shown in Figure 3D, exhibiting a high conductance peak of 7.6 × 10¹⁰ S cm⁻², corresponding to a high subgap DOS of 1.2 × 10¹⁴ cm⁻² eV⁻¹ or 3.3
10^{20} cm$^{-3}$ eV$^{-1}$ normalized by T_{ch}. Note that the conductance peaks here appear at around $V = 0$, so that it is not affected by the gate leakage current. Figure 3E shows the subgap DOS versus energy level extracted from G_p/ω versus ω data in Figure 3D, with energy mapping obtained from the peak frequency (Brammertz et al., 2007). The conductance measurement further confirms the high subgap DOS in ALD In$_2$O$_3$, which contributes to the high carrier density.

Note that the high electron density in the ultrathin ALD In$_2$O$_3$ film is critical to achieve high I_D in an ultrathin semiconducting film. In other words, semiconducting films with CNL alignment deeply inside E_C are more suitable for devices with an ultrathin body in the nanometer scale. Such CNL alignment ensures a low Schottky barrier and a high carrier density, even considering the impact of quantum confinement effects. The CNL alignments of some selected semiconductor materials are plotted in Figure 4, including conventional semiconductors such as Si/Ge/III–V and oxide semiconductors such as IGZO (Mönch, 1997; Robertson and Falabretti, 2006; Ye, 2008; Robertson and Clark, 2011; Wager et al., 2012; Swallow et al., 2021). As we can see, in both conventional semiconductors and oxide semiconductors, materials with In atoms tend to have CNL closer to the vacuum level with higher electron density. Therefore, to look for materials deeper inside E_C and with reasonable bandgap is the key to realize high-performance semiconducting materials with ultrathin bodies.

TCAD simulations are conducted to investigate the impact of defects at the oxide/semiconductor interface and in bulk In$_2$O$_3$ on the C–V and G–V characteristics of ALD In$_2$O$_3$ MOS capacitors using the same structure as in Figure 1B. Figure 5 shows TCAD simulation results investigating the impact of interface trap states at the HfO$_2$/In$_2$O$_3$ interface on C–V measurements and the conductance method. The interface trap density at the HfO$_2$/In$_2$O$_3$ interface has been estimated to be 6.3×10^{11} cm$^{-2}$ eV$^{-1}$ with the subthreshold method (Si et al., 2021d). In this work, SS is much larger because of the impact of gate leakage, but the D_{it} at the HfO$_2$/In$_2$O$_3$ interface is expected to be similar to the aforementioned value and independent of channel thickness because of the similar atomic configuration. For the TCAD simulation, a U-shape interface trap states distribution was specified at the HfO$_2$/In$_2$O$_3$ interface of the gate stack (Schulz, 1983; Jankovic, 2012), with a minimum D_{it} of 10^{12} cm$^{-2}$ eV$^{-1}$ for Figures 5A,B and 10^{13} cm$^{-2}$ eV$^{-1}$ for Figures 5C,D. Acceptor-like and donor-like traps are in tail distribution at the valence band and conduction band edges, respectively. Figure 5A and Figure 5C present the simulated C–V data of the gate stack capacitor, exhibiting frequency dispersion in the depletion region and no obvious frequency dispersion in the accumulation region. Figures 5B,D show the corresponding G_p/ω versus ω characteristics, showing a much lower conductance peak than the experimental data, even with quite large D_{it}. Both C–V and G–V simulation results confirm that interface traps at the HfO$_2$/In$_2$O$_3$ interface are not the main reason for the C–V frequency dispersion in the depletion region and high conductance peak extracted from the experiments. Therefore, the frequency dispersion and high conductance peak are most likely contributed by the bulk traps inside In$_2$O$_3$.

Figure 6 shows the TCAD simulation results investigating the impact of the bulk trap states in the In$_2$O$_3$ layer on C–V and G–V characteristics. The bulk trap distribution in the semiconductor layer
for simulation is shown in Figure 6C, considering trap states with both Gaussian and tail distributions (Kamiya et al., 2010). The bulk trap levels below mobility edge have a peak density of nearly $6 \times 10^{21} \text{cm}^{-3} \text{eV}^{-1}$. Figure 6A shows simulated C–V characteristics of the gate stack capacitor, showing a significant frequency dispersion in the accumulation region. Figure 6B shows the corresponding G_p/ω versus ω data. A high conductance peak of about $1.1 \times 10^{-5} \text{S} \cdot \text{s/cm}^2$ can be extracted from the simulation results. Both simulated C–V characteristics and G_p/ω–ω characteristics are highly consistent with the experimental results, which proves that bulk traps of more than $1 \times 10^{20} \text{cm}^{-3}$ exist in the In$_2$O$_3$ layer. Thus, bulk traps in In$_2$O$_3$ are the main cause for C–V frequency dispersion and the high conductance peak, instead of interface trap states at the HfO$_2$/In$_2$O$_3$ interface. It is understood that part of the donor trap states is frozen at high frequency, leading to the reduction of effective N_D and the flat band voltage shift, so that a large frequency dispersion at high voltage can be observed.

CONCLUSION

In summary, ALD In$_2$O$_3$ transistors and MOS capacitors with 3.5 nm HfO$_2$ as the gate insulator and 3.5 nm In$_2$O$_3$ as the channel semiconductor are fabricated. The interface and bulk traps in this MOS gate stack of ALD In$_2$O$_3$ transistors are systematically studied by using the C–V and conductance method. A low EOT of 0.93 nm is achieved directly from the accumulation capacitance in the C–V curve, indicating a high-quality gate oxide and oxide/semiconductor interface. Defects in bulk In$_2$O$_3$ with the energy level in subgap are confirmed to be responsible for the conductance peak in G_p/ω versus ω curves by TCAD simulations of C–V and G–V characteristics. A high n-type doping of $1 \times 10^{20} \text{cm}^{-3}$ is achieved by C–V measurement, which is further confirmed by the high conductance peak of $7.6 \times 10^{-6} \text{S} \cdot \text{s/cm}^2$, corresponding to a high subgap DOS of $3.3 \times 10^{20} \text{cm}^{-3} \text{eV}^{-1}$, which contributes to the high n-type doping and high electron density. The high electron density is because CNL aligns deeply inside the E_C, which is speculated to be related to In atoms, thus In-based semiconductors tend to have high electron densities.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

MS and ZL performed device fabrication. MS and ZL did the electrical measurements. ZW and MS analyzed the electrical data. PY conceived the idea on CNL alignment. ZW conducted TCAD simulations. ZW and MS analyzed the simulation data. ZW, MS, and PY wrote the manuscript.

FUNDING

This work was supported in part by the Semiconductor Research Corporation (SRC) nCore Innovative Materials and Processes for...
REFERENCES

38 Nm Channel Length : Achieving Record High Gm,max of 125 µS/µm at VDS of 1 V and Ion of 350 µA/µm,” in 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 16-19 June 2020. TH2.3.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Wang, Lin, Si and Ye. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.