Vertically stacked multilayer atomiclayer-deposited sub-1-nm In₂O₃ fieldeffect transistors with back-end-of-line compatibility

Cite as: Appl. Phys. Lett. **120**, 202104 (2022); https://doi.org/10.1063/5.0092936 Submitted: 24 March 2022 • Accepted: 28 April 2022 • Published Online: 16 May 2022

🔟 Zhuocheng Zhang, Zehao Lin, 🔟 Mengwei Si, et al.

COLLECTIONS

This paper was selected as Featured

ARTICLES YOU MAY BE INTERESTED IN

Atomically thin In₂O₃ field-effect transistors with 10¹⁷ current on/off ratio Applied Physics Letters **119**, 263503 (2021); https://doi.org/10.1063/5.0075166

Enhancement-mode atomic-layer thin In₂O₃ transistors with maximum current exceeding 2 A/mm at drain voltage of 0.7 V enabled by oxygen plasma treatment Applied Physics Letters **118**, 052107 (2021); https://doi.org/10.1063/5.0039783

Oxygen vacancy concentration as a function of cycling and polarization state in TiN/ $Hf_{0.5}Zr_{0.5}O_2/TiN$ ferroelectric capacitors studied by x-ray photoemission electron microscopy

Applied Physics Letters 120, 202902 (2022); https://doi.org/10.1063/5.0093125

Shorten Setup Time Auto-Calibration More Qubits

Fully-integrated Quantum Control Stacks Ultrastable DC to 18.5 GHz Synchronized <<1 ns Ultralow noise

visit our website >

Appl. Phys. Lett. **120**, 202104 (2022); https://doi.org/10.1063/5.0092936 © 2022 Author(s).

Vertically stacked multilayer atomic-layer-deposited sub-1-nm In₂O₃ field-effect transistors with back-end-of-line compatibility **5**

Cite as: Appl. Phys. Lett. 120 , 202104 (2022); <u>doi: 10.1063/5.0092936</u> Submitted: 24 March 2022 · Accepted: 28 April 2022 · Published Online: 16 May 2022	View Online	Export Citation	CrossMark
Zhuocheng Zhang, ^{1,2} (b) Zehao Lin, ^{1,2} Mengwei Si, ^{1,2} (b) Di Zhang, ³ (b) Hongyi Dou, ³ Zhizh Adam Charnas, ^{1,2} (b) Haiyan Wang, ³ (b) and Peide D. Ye ^{1,2,a)} (b)	iong Chen	^{1,2} D	

AFFILIATIONS

¹Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA ²Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA ³School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA

^{a)}Author to whom correspondence should be addressed: yep@purdue.edu

ABSTRACT

In this work, we demonstrate vertically stacked multilayer sub-1-nm In_2O_3 field-effect transistors (FETs) with surrounding gate in a backend-of-line (BEOL) compatible low-temperature fabrication process. A typical bottom-gated single layer In_2O_3 FET with maximum on-state current (I_{ON}) of 890 μ A/ μ m at $V_{DS} = 0.8$ V and an on/off ratio over 10⁶ is achieved with a channel length (L_{ch}) of 100 nm. The effects of HfO₂ capping and O₂ annealing are systematically studied, which is critical to realizing the multilayer FETs. Each atomically thin In_2O_3 channel layer with a thickness (T_{IO}) of 0.9 nm is realized by atomic layer deposition (ALD) at 225 °C. Multilayer FETs with a number of In_2O_3 layers up to 4 and 1.2 nm-thick HfO₂ between each individual layer are fabricated. An enhancement of on-state current (I_{ON}) from 183 μ A in a single layer In_2O_3 FET to 339 μ A in a 4 layer device with an on/off ratio of 3.4×10^4 is achieved, demonstrating the key advantage of the multilayer FETs to improve the current. Several critical features, such as large-area growth, high uniformity, high reproducibility, ultrathin body, flexibility, and BEOL compatibility, have turned ALD In_2O_3 into a noteworthy candidate for next-generation oxide semiconductor channel materials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0092936

Exploration for back-end-of-line (BEOL) compatible nextgeneration channel materials is becoming crucial for monolithic 3D integration at advanced technology nodes. Oxide semiconductors, as one competitive candidate, have been widely studied over the past few decades and become the leading material in the field of flat panel displays due to three main advantages.^{1–6} First, the high transparency due to the large bandgap of oxide semiconductors enables numerous applications in flexible displays and wearable devices. Second, the amorphous microstructure makes oxide semiconductors film relatively uniform and avoids variation of electrical properties caused by grain boundary problems in poly-Si thin film transistors (TFTs).⁷ Third, the bottom of the conduction band in amorphous oxide semiconductors is primarily composed of the isotropically spread metal *ns* orbitals, which has possible direct overlap with neighboring metal *ns* orbitals, so the chemical bond is insensitive to distortion and the mobility is much higher than covalent semiconductors consisting of sp^3 orbitals with strong directivity.⁸

Nevertheless, the large film thickness by sputtering and the lack of effective gate control due to the degeneracy in the conduction band have impeded oxide semiconductors to be used as active channel materials in ultra-scaled TFTs.⁹ Remarkably, recent atomic layer deposition (ALD) deposited nanometer-thin In₂O₃ field-effect transistors (FETs) exhibit maximum on-state currents over 2 mA/ μ m and well-behaved switching characteristics with the on/off ratio over 10⁶ and the minimum subthreshold slope (SS) of 88 mV/dec.¹⁰ Compared to the most sputtered oxide semiconductor thin films, the emerging ALD channel offers two main advantages. First, ALD has an accurate film thickness control in atomic scale and high reproducibility. Second, ALD provides large-area uniformity and excellent conformity on 3D structures.^{11,12} Hence, carrier scattering due to surface roughness can

be reduced with the atomically smooth surface of the In₂O₃ thin film enabled by ALD. On the other hand, it has been confirmed that the ALD deposited In₂O₃ has a strong thickness-dependent electron transport, which is attributed to the quantum confinement effect on the alignment of trap neutral level (TNL).^{13,14} The bandgap increases from 1.4 eV in bulk In2O3 to 2.43 eV in a 0.7 nm-thick film as the thickness decreases, which is smaller than most other semiconductors of which the bandgap is usually larger than 3 eV.¹⁴ Therefore, the lack of gate control due to extremely high carrier density can be solved by lowering the film thickness and a maximum on-state current (I_{ON}) of 2.5 mA/ μ m with a high field effect mobility (μ _{FE}) of 113 cm²/V·s has been reported in recent back-gate In₂O₃ FETs with a channel thickness of 2.2 nm and a channel length of 40 nm.¹⁵ In addition, an enhancement-mode operation is also achieved through O₂ plasma or low temperature O₂ annealing because of the filling of oxygen vacancies,^{16,17} making the ALD deposited In₂O₃ film a choice as the channel material in the complementary metal-oxide-semiconductor (CMOS) design and BEOL compatible monolithic 3D integration.

In this work, we systematically study the effects of HfO₂ capping and O₂ annealing to effectively control the threshold voltage (V_T) of each channel layer based on typical atomically thin In₂O₃ FETs with I_{ON} of 890 μ A/ μ m at V_{DS} = 0.8 V, the on/off ratio over 10⁶, the channel thickness (T_{IO}) of 2 nm, and the channel length (L_{ch}) of 100 nm. Vertically stacked multilayer sub-1-nm-thin In₂O₃ FETs with surrounding gate with the dielectric of 5 nm HfO₂ are realized with an enhancement of I_{ON} as the number of In_2O_3 channel layers increases, demonstrating the key advantage of multilayer FETs.

Figure 1(a) shows the schematic diagram of a single layer In_2O_3 FET grown by ALD. The gate stack includes 40 nm Ni as the bottom gate and 5 nm HfO₂ as the gate dielectric. Figure 1(b) shows the 3D schematic diagram of a stacked four-layer In2O3 FET with 0.9 nm In₂O₃ as each semiconducting channel separated by 1.2 nm HfO₂. Figure 1(c) shows the cross-sectional view of the device schematic in source/drain direction. Thickness of films is accurately controlled by ALD cycles and measured by ellipsometry. The whole vertically stacked channel is surrounded by 40 nm Ni as gate metal and 5 nm HfO₂ as gate dielectric so that all inner In₂O₃ channels can be modulated by the surrounding gate. The detailed device fabrication process is described in the supplementary material. Figure 1(d) shows the scanning transmission electron microscopy (STEM) image of a stacked five-layer In₂O₃ structure with clear interfaces between In₂O₃ and HfO₂. Figure 1(e) shows the energy dispersive x-ray spectroscopy (EDS) image of the same stack, which also confirms the multilayer structure. Figure 1(f) shows the scanning electron microscopy (SEM) image of a typical fabricated device with sharp edge and well-defined L_{ch} of 1 μ m. All devices have a channel width of 2 μ m. Figure 1(g) shows a low surface roughness of 0.38 nm for the ALD deposited In₂O₃ film measured by atomic force microscope (AFM). This result has relatively small variance for different batches of ALD In₂O₃ films, indicating high reproducibility in potential large-scale industrial manufacture. The fabrication of vertically stacked multilayer In₂O₃ FETs

FIG. 1. (a) Device schematic of a single-layer ALD In_2O_3 FET with 5 nm HfO₂ as bottom gate dielectric. Device schematic of a vertically stacked four-layer In_2O_3 FET with 5 nm HfO₂ as surrounding gate dielectric in (b) a 3D model, (c) cross-sectional view in the S/D direction. (d) STEM image and (e) EDS image of the vertically stacked five-layer ALD In_2O_3 structure. (f) SEM image (top view) of a finished vertically stacked multilayer In_2O_3 FET with surrounding gate. (g) AFM measurement of 2 nm In_2O_3 thin film deposited on a Si substrate with a surface roughness (RMS) of 0.38 nm.

FIG. 2. (a) Output characteristics of a single layer ln_2O_3 FET with 5 nm HfO₂ as bottom gate dielectric and channel length of 1 μ m. (b) Transfer characteristics of a single layer ln_2O_3 FET with 5 nm HfO₂ as bottom gate dielectric and channel length of 100 nm, showing l_{ON} of 890 μ A/ μ m at $V_{DS}=0.8$ V.

has a low thermal budget of 250 °C, which is in general BEOL compatible for monolithic 3D integration.

Figure 2 shows the typical output and transfer characteristics of the bottom-gated single layer In2O3 FET with T10 of 2 nm. Drain current saturation is observed at large V_{DS} in the device with L_{ch} of 1 μ m. Maximum I_{ON} of 890 μ A/ μ m at $V_{DS} = 0.8$ V, the on/off ratio over 10⁶, the subthreshold slope (SS) of 130 mV/dec, and $\mu_{\rm FE}$ of 23 cm²/V·s are achieved in the single layer In2O3 FET with Lch of 100 nm. To investigate the conducting mechanism of the ALD deposited In₂O₃ films, Fig. 3 presents the evolution of the transfer characteristics of the same single layer In2O3 FET after HfO2 capping and multiple times of O2 annealing in (a) log-scale plot at $V_{DS} = 0.8$ V and (b) linear-scale plot at $V_{DS} = 0.1$ V. A loss of gate control over the In₂O₃ channel is observed after 3 nm HfO₂ capping by ALD on the as-fabricated device at 200 °C, whereas the control is gradually retrieved after following O2 annealing at 250 °C with clear positive V_T shift. Such phenomena can be understood by the band diagram of In_2O_3 shown in Fig. 3(c). It is known that oxygen vacancies act as shallow donors and determine the carrier densitv in In₂O₃ related films.^{16–18} Modulation of oxygen pressure during film deposition or thermal annealing contributing to the change in electrical conductivity has been widely investigated in ITO, In-Zn-O (IZO), In-Ga-Zn-O (IGZO), etc.^{1-6,18,19} Therefore, it is likely that oxygen atoms in atomically thin In2O3 film are scavenged by the ALD growth of HfO2 due to a more stable Hf-O bond with a dissociation

energy of 801 kJ/mol compared to In-O bond of 346 kJ/mol.^{20,21} The created oxygen vacancies in In₂O₃ provide extra electrons, and the Fermi level moves deeply into the conduction band, resulting in a large electron density, negative V_T shift, and the lack of gate control. More defects can also be generated in the bulk film and interface. Conversely, oxygen vacancies can be filled and defects can be healed by O2 annealing, which reduces the interface trap density and lowers electron density with increasing annealing time, moves Fermi level toward the conduction band edge, and gradually restores gate control. Further experiments on material characterization are still needed to validate this explanation. In addition, the different gate control capabilities between top and bottom gates in a dual-gated single layer In₂O₃ FET are also studied in Fig. 4. The measurement was done by adjusting single top/bottom gate voltage with another grounded. A better gate control is obtained in bottom-gated control condition because the carrier density of In2O3 under S/D contact can only be modulated by bottom gate, leading to favorably controlled contact resistance (R_C). Meanwhile, the bottom In2O3/HfO2 interface has less oxygen vacancies than the top In₂O₃/HfO₂ interface, since In-O chemical bond is weaker than Hf-O one so that the ALD growth of In₂O₃ on top of HfO₂ cannot break the surface Hf-O bond of the bottom HfO₂ film.

Figures 5(a)-5(d) present the transfer characteristics of stacked one, two, three, and four-layer In₂O₃ FETs with L_{ch} of 50 nm and the surrounding gate structure shown in Fig. 1. Each In₂O₃ channel layer

FIG. 3. (a) Logscale plot of the evolution of transfer characteristics of a bottom-gated single layer In_2O_3 FET with $V_{DS} = 0.8$ V after HfO₂ capping and O₂ annealing. (b) Linear plot of the evolution of transfer characteristics of a bottom-gated single layer In_2O_3 FET with $V_{DS} = 0.1$ V after HfO₂ capping and O₂ annealing. It shows the challenge of top-gate HfO₂ integration. (c) Band diagram of In_2O_3 after HfO₂ capping and long-time O₂ annealing showing the change of E_F.

FIG. 4. (a) Transfer characteristics of a single layer ln_2O_3 FET under bottom gate control with V_{TG} set to 0 V. (b) Transfer characteristics of a single layer ln_2O_3 FET under top gate control with V_{BG} set to 0 V.

with T_{IO} of 0.9 nm is separated by 1.2 nm HfO₂, and an on/off ratio around 10⁵ is achieved. Figure 5(e) shows the output characteristics of a stacked four-layer In₂O₃ FET with L_{ch} of 1 μ m, exhibiting drain current saturation at large V_{DS} as one-layer one shown in Fig. 2. Figure 5(f) summarizes I_{ON} at V_{DS} = 1 V, V_{GS} = 1.7 V and total In₂O₃ channel thickness vs the number of vertically stacked layers. An increase in drain current is realized by stacking more In₂O₃ channel layers, confirming that the key advantage of multilayer FETs for enhancing I_{ON} since multilayer FET is claimed by Si industry as the technology for 3 nm node and beyond. Nevertheless, a modest current gain from 183 μ A in a single layer In₂O₃ FET to 339 μ A in a four-layer device is observed, which seems a limited enhancement for the stacked channel. This is because the surrounding gate only has a relatively weak control of the inner second and third $\rm In_2O_3$ channel compared to it can directly modulate the carrier density of first and fourth $\rm In_2O_3$ channels over the top and bottom 5 nm-thick HfO₂. Such deficiency can be improved by inserting gate metal between each $\rm In_2O_3$ to achieve an equally strong gate control of all conducting channels. The nonlinear increase in $\rm I_{ON}$ is due to a 200 nm $\rm L_{ch}$ difference between top and the other $\rm In_2O_3$ layers, which is a process issue with e-beam lithography and can be eliminated eventually.

Figure 6(a) shows R_C extracted by the transfer length method (TLM) vs $V_G - V_T$. R_C is relatively large due to the sub-1-nm In_2O_3 channel, which can be improved by increasing channel thickness or

FIG. 5. Transfer characteristics of a (a) single-layer, (b) two-layer, (c) three-layer, and (d) four-layer ln_2O_3 FET with surrounding gate. (e) Output characteristics of a four-layer ln_2O_3 FET with surrounding gate and channel length of 1 μ m. (f) On-state current at V_{DS} of 1 V, V_{GS} of 1.7 V and total ln_2O_3 channel thickness vs number of layers, showing increasing current with more ln_2O_3 layers.

FIG. 6. (a) Contact resistance vs V_G – V_T of stacked multilayer In₂O₃ FETs. (b) V_T, (c) SS, and (d) g_m scaling metrics of stacked multilayer In₂O₃ FETs with surrounding gate, L_{ch} from 50 nm to 1 μ m. Each data point represents the average of at least three devices.

raised S/D contacts. The device performance of multilayer FETs still has large room to improve by optimizing the fabrication process. Figures 6(b)–6(d) summarize the scaling metrics of stacked multilayer In₂O₃ FETs with L_{ch} from 50 nm to 1 μ m statistically. Each data point represents the average of at least three devices. Figure 6(b) shows V_T vs L_{ch}, which is extracted by the linear extrapolation method at V_{DS}=0.1 V. Notably, the device has a strong immunity to short

FIG. 7. Benchmark of I_{ON} vs film thickness of recent thin film oxide semiconductor transistors. Solid symbols represent films grown by ALD.

channel effects due to the ultrathin In2O3 channel, whose thickness is even comparable to monolayers of 2D semiconductors, such as MoS₂. Moreover, high-quality HfO2 gate dielectric can be realized by ALD on the 3D In₂O₃ channel, while it is impeded by the lack of dangling bonds on the van der Waals surface in 2D materials. Both factors contribute to extremely small transistor characteristic length,²² offering great potential for ultimately scaled FETs. Figure 6(c) presents SS vs L_{ch} characteristics. Minimum SS of 163 mV/dec is obtained in a threelayer In2O3 FET, which can be further improved by improving interface quality and scaling gate dielectric. Figure 6(d) summarizes the intrinsic transconductance vs Lch for In2O3 FETs with different channel layers. Figure 7 presents a benchmarking of I_{ON} for ALD In₂O₃ FETs and other sputtered oxide semiconductors. As can be seen, ALD deposited oxides have more accurate thickness control in sub-1-nm region compared to sputtered films. Meanwhile, the current level of the atomically thin ALD In2O3 FETs can compete with other sputtered oxides with larger thickness, demonstrating outstanding performance of ALD In2O3 as a promising BEOL-compatible oxide semiconductor channel.

In conclusion, BEOL-compatible vertically stacked multilayer In_2O_3 FETs with surrounding gate are demonstrated. Each atomiclayer-thin 0.9 nm In_2O_3 channel layer and 1.2 nm HfO₂ separation layer are realized by accurately controlled ALD at 225 °C. Several distinct features, namely, large-area growth, high uniformity, excellent conformability, ultrathin body, and low thermal budget fabrication process demonstrate ALD In_2O_3 as a competitive oxide semiconductor channel material for future monolithic 3D integration and ultimately scaled electronics. See the supplementary material for the details of device fabrication and characterization.

The authors gratefully acknowledge the funding support from Semiconductor Research Corporation (SRC) Nanoelectronic Computing Research Innovative Materials and Processes for Accelerated Compute Technologies Center and Defense Advanced Research Projects Agency/SRC Joint University Microelectronics Program Applications and Systems-driven Center for Energy Efficient integrated Nano Technologies Center on this work.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

- ¹K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Jpn. J. Appl. Phys. **45**(5B), 4303–4308 (2006).
- ²H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. **89**(11), 112123 (2006).
- ³E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater. 24(22), 2945–2986 (2012).
 ⁴S. M. Li, M. C. Tian, Q. G. Gao, M. F. Wang, T. Y. Li, Q. L. Hu, X. F. Li, and Y. Q. Wu, Nat. Mater. 18(10), 1091–1097 (2019).
- ⁵W. Chakraborty, B. Grisafe, H. Ye, I. Lightcap, K. Ni, and S. Datta, paper presented at the 2020 IEEE Symposium on VLSI Technology, 2020.

- ⁶S. Samanta, K. Han, C. Sun, C. Wang, A. V. Y. Thean, and X. Gong, paper presented at the 2020 IEEE Symposium on VLSI Technology, 2020.
- ⁷T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater. 11(4), 044305 (2010).
- ⁸K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature **432**(7016), 488–492 (2004).
- ⁹M. Si, J. Andler, X. Lyu, C. Niu, S. Datta, R. Agrawal, and P. D. Ye, ACS Nano 14(9), 11542–11547 (2020).
- ¹⁰M. Si, Z. Lin, A. Charnas, and P. D. Ye, IEEE Electron Device Lett. **42**(2), 184–187 (2021).
- ¹¹J. Sheng, H.-J. Jeong, K.-L. Han, T. Hong, and J.-S. Park, J. Inf. Disp. 18(4), 159–172 (2017).
- ¹²M. Wang, D. Zhan, X. Wang, Q. Hu, C. Gu, X. Li, and Y. Wu, IEEE Electron Device Lett. **42**(5), 716–719 (2021).
- ¹³P. D. Ye, J. Vac. Sci. Technol. A 26(4), 697–704 (2008).
- ¹⁴M. Si, Y. Hu, Z. Lin, X. Sun, A. Charnas, D. Zheng, X. Lyu, H. Wang, K. Cho, and P. D. Ye, Nano Lett. 21(1), 500–506 (2021).
- ¹⁵M. Si, Z. Lin, Z. Chen, and P. D. Ye, in Proceeding of the 2021 IEEE Symposium on VLSI Technology, 2021.
- ¹⁶A. Charnas, M. Si, Z. Lin, and P. D. Ye, Appl. Phys. Lett. 118(5), 052107 (2021).
- ¹⁷M. Si, A. Charnas, Z. Lin, and P. D. Ye, IEEE Trans. Electron Devices 68(3), 1075–1080 (2021).
- ¹⁸T. Kamiya and H. Hosono, NPG Asia Mater. 2(1), 15–22 (2010).
- ¹⁹S. Y. Park, J. H. Song, C. K. Lee, B. G. Son, C. K. Lee, H. J. Kim, R. Choi, Y. J. Choi, U. K. Kim, C. S. Hwang, H. J. Kim, and J. K. Jeong, <u>IEEE Electron Device Lett.</u> **34**(7), 894–896 (2013).
- ²⁰H. Fujiwara, Y. Sato, N. Saito, T. Ueda, and K. Ikeda, IEEE Trans. Electron Devices **67**(12), 5329–5335 (2020).
- ²¹Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).
- ²²Y. Liu, X. D. Duan, H. J. Shin, S. Park, Y. Huang, and X. F. Duan, Nature 591(7848), 43–53 (2021).