BEOL Compatible Indium-Tin-Oxide Transistors: Switching of Ultrahigh-Density 2-D Electron Gas Over $0.8 \times 10^{14}/\text{cm}^2$ at Oxide/Oxide Interface by the Change of Ferroelectric Polarization

Mengwei Si, Anna Murray, Zehao Lin, Joseph Andler, Junkang Li, Jinhyun Noh, Sami Alajlouni, Chang Niu, Xiao Lyu, Dongqi Zheng, Kerry Maize, Ali Shakouri, Suman Datta, Fellow, IEEE, Rakesh Agrawal, Member, IEEE, and Peide D. Ye, Fellow, IEEE

Abstract—In this work, we report back-end-of-line (BEOL) compatible indium-tin-oxide (ITO) transistors with ferroelectric (FE) Hf$_{0.5}$Zr$_{0.5}$O$_{2}$ (HZO) as gate insulator. A tunable high-density 2-D electron gas over $0.8 \times 10^{14}/\text{cm}^2$ is achieved at the HZO/ITO oxide/oxide interface because of the FE polarization, which is confirmed by I–V, positive up and negative down (PUND), and Hall measurements. Such high carrier density can be completely modulated and switched on and off by FE polarization switching, enabling high mobility ITO transistor with high on-current and high on/off ratio.

Index Terms—Back-end-of-line (BEOL) compatible, ferroelectric (FE), hafnium zirconium oxide, high carrier density, indium thin oxide, oxide semiconductor.

I. INTRODUCTION

OXIDE semiconductors are considered as promising channel materials for back-end-of-line (BEOL) compatible transistors for monolithic 3-D integration to maximize the intertier via density [1]. Thin-film transistors (TFTs) with oxide semiconductor channels, such as indium oxide [2]–[4], indium-tin-oxide (ITO) [5]–[8], W-doped In$_2$O$_3$ (IWO) [9], indium-gallium-zinc-oxide (IGZO) [10], [11], and indium-aluminum-zinc-oxide (IAZO) [12], recently attract revived attention as potential BEOL compatible transistors. High-performance ITO transistors with ferroelectric (FE) hafnium zirconium oxide (Hf$_{0.5}$Zr$_{0.5}$O$_2$, HZO) as gate insulator are recently demonstrated, exhibiting high on-current over 1 A/mm [8]. Such high on-current density in a tens cm2/V·s mobility material is understood due to the ultrahigh carrier density in ITO channel approaching $10^{14}/\text{cm}^2$.

The quest for high carrier density is important in electronic devices, because high carrier density can lead to high current density in semiconductor devices and even induce phase transition, i.e., superconductivity at low temperatures. However, field-effect-induced carrier density in semiconductor is limited to $\sim 1–2 \times 10^{13}/\text{cm}^2$, due to the conventional dielectric breakdown. The polarization in FE material can offer high polarization charge density more than $10^{14}/\text{cm}^2$ [13]–[19], which can be used to generate high-density 2-D electron gas on semiconductor with a low trap density interface. The demonstrated HZO/ITO oxide/oxide interface has a high 2-D electron density even beyond GaN-based polar semiconductor interface of $\sim 2–3 \times 10^{13}/\text{cm}^2$.

In this work, the carrier density at the HZO/ITO interface was investigated systematically by I–V, positive up and negative down (PUND), and Hall measurements. An ultrahigh-density 2-D electron gas over $0.8 \times 10^{14}/\text{cm}^2$ is achieved at the HZO/ITO oxide/oxide interface. It is understood that such an ultrahigh carrier density is introduced by the polarization density in FE HZO and low interface trap density at the oxide/oxide interface. The polarization switching in FE HZO also contributes to the on/off switching of ITO transistor, leading to high mobility, high on-current, and high on/off ratio ITO transistors.

II. EXPERIMENTS

Fig. 1(a) shows the schematic of an ITO transistor with p+ Si/20-nm FE HZO/3-nm Al$_2$O$_3$/ITO gate-stack. The thickness
of ITO under source/drain (S/D) ohmic contacts is 10 nm. The thickness of ITO channel is recessed to 2 nm. 80-nm Ni is used for S/D electrodes. 50-nm SiO₂ under source/drain pad serves as field oxide to reduce the gate leakage current and prevent the polarization switching of FE HZO under S/D pads. Fig. 1(b) shows a false-colored scanning electron microscopy (SEM) image of a fabricated ITO transistor, capturing the ITO channel, Ni electrodes, and SiO₂ for isolation.

Fig. 1(c) shows the fabrication process flow of the ITO transistors. The device fabrication process started with solvent cleaning of p+ Si substrate. 20-nm HZO (Hf:Zr ratio = 1:1) and 3-nm Al₂O₃ were then deposited on p+ Si substrate by atomic layer deposition (ALD) at 200 °C. [(CH₃)₂N]₄Hf (TDMAHf), [(CH₃)₂N]₄Zr (TDMAZr), (CH₃)₃Al (TMA), and H₂O were used as the Hf, Zr, Al, and O precursors. The Al₂O₃ capping is adopted to enhance the FE polarization of HZO and protect HZO during the device processing. After rapid thermal annealing (RTA) at 400 °C in N₂ environment for 1 min, 10-nm ITO was deposited by RF sputtering with a composition of 90 wt% In₂O₃ and 10 wt% SnO₂. Channel isolation was done by wet etching of ITO using hydrochloric acid solution (HCl, 20%). 50-nm SiO₂ was then deposited by e-beam evaporation as field oxide to isolate the source/drain pads. 80-nm Ni was then deposited as S/D ohmic contacts. Diluted HCl solution (3.4%) was used for channel recess by wet etching. The fabricated devices were then annealed by RTA in N₂ for 30 s at various temperatures.

Fig. 1(d) shows P–V characteristics of Ni/ITO/3-nm Al₂O₃/20-nm HZO/p+ Si capacitor, showing clear FE P–V hysteresis loop, where the voltage is applied to the p+ Si electrode. C–V characteristics from 1 kHz to 1 MHz are shown in Fig. 1(e), exhibiting a typical FE C–V hysteresis loop. Capacitance at negative voltages is smaller than positive voltage due to the depletion of the 10-nm ITO.

III. RESULTS AND DISCUSSION

Fig. 2(a) shows the Id–Vgs characteristics of an as-fabricated ITO transistor with channel length of 5 µm without RTA. Fig. 2(b) shows the Id–Vgs characteristics of an ITO transistor with same Lch of 5 µm and with RTA at 350 °C for 30 s. Lch of 5 µm and with RTA at 350 °C for 30 s. Lch of 5 µm and with RTA at 350 °C for 30 s. Lch of 5 µm and with RTA at 350 °C for 30 s. Lch of 5 µm and with RTA at 350 °C for 30 s. Mobility of ITO channel is improved significantly by RTA. ITO transistor with RTA has smaller carrier density at the same VGS due to VT shift. Carrier density >0.8 × 10¹⁴/cm² is achieved.
and with 30 s RTA from 250 °C to 350 °C in 25 °C step are summarized in Fig. 2(d), where each data point is the average of at least five devices. ON-current is found to improve significantly by RTA.

Fig. 2(e) compares the effective mobility (μ_{eff}) versus V_{GS} of ITO transistors without RTA and with RTA at 350 °C for 30 s, extracted from $I-V$ characteristics. Drain currents can be estimated according to $I_D = n_{2\text{D}} q \mu E$, where $n_{2\text{D}}$ is the 2-D carrier density, q is the elementary charge, μ is the mobility, and E is the source to drain electric field. E is estimated as $V_{\text{DS}}/L_{\text{ch}}$ due to the long channel and low V_{DS} of 0.1 V. Fig. 2(f) shows the $n_{2\text{D}}$ versus V_{GS} calculation of ITO transistors without RTA and with RTA at 350 °C for 30 s, according to this equation. A high-density 2-D electron gas over $0.8 \times 10^{14}/\text{cm}^2$ is the simple estimation of $n_{2\text{D}}$ highly depending on the accuracy of mobility extraction. The extraction of mobility here does not consider the impact of contact resistance and interface/bulk traps so that mobility may be underestimated and carrier density may be overestimated. Hall measurement discussed next is a more accurate proof of carrier density in ITO transistors. It can be seen that the mobility extraction of ITO shows a more accurate proof of carrier density in ITO transistors.

Fig. 3 shows the comparison of I_D versus $V_{\text{GS}}/T_{\text{ox}}$ characteristics of ITO transistors with FE HZO or dielectric HfO$_2$ as gate insulator, without annealing and with $L_{\text{ch}} = 1 \mu m$ at $V_{\text{GS}} = 1$ V. FE polarization is needed to switch on and off the ITO channel.

![Fig. 3. Comparison of I_D versus $V_{\text{GS}}/T_{\text{ox}}$ characteristics of ITO transistors with FE HZO or dielectric HfO$_2$ as gate insulator, without annealing and with $L_{\text{ch}} = 1 \mu m$ at $V_{\text{GS}} = 1$ V. FE polarization is needed to switch on and off the ITO channel.](image)

The self-heating effect is evaluated to study the impact of high carrier density on thermal dissipation [20]. Fig. 5(a)–(f) shows the temperature increase (ΔT) map and ΔT versus power characteristics of ITO channel region at different power by a thermo-reflectance imaging. ΔT of 47 K is achieved at a high power of 4.9 W/mm.

![Fig. 5. (a)–(f) Temperature increase map of channel region at different power of an ITO transistor by thermo-reflectance imaging. (g) Temperature increase versus power characteristics of the same thermo-reflectance imaging measurement.](image)
down the FE HZO. Then, a positive switching voltage pulse is applied to switch up the FE HZO, leading to a large switching current response, as shown in Fig. 6(d). Then, a second positive nonswitching voltage pulse is applied to measure the charging of dielectric components. Therefore, FE polarization switching can be extracted and charging due to the dielectric components has no contribution to the polarization measurement results. Another two negative voltage pulses are applied to measure the polarization switching down response. This method and setup are discussed in great details in previous work [15].

Fig. 7(a) shows the transient switching current response, nonswitching current response, and the polarization switching current of a Ni/10-nm ITO/3-nm Al₂O₃/20-nm HZO/p⁺ Si capacitor. This structure is the same as the stack in S/D ohmic contacts region. Fig. 7(b) shows the transient switching current response, nonswitching current response, and the polarization switching current of ITO transistor with \(L_{ch} = 5 \mu m\) and channel width of 8 \(\mu m\). Note that the nonswitching components here are relatively larger because of the charging of the area under test pads, the impact of which is eliminated in the polarization switching current by PUND. The total polarization switching here includes both from the S/D contacts and channel. By subtracting polarization charge in S/D contact region from the total polarization switching [as shown in Fig. 7(c)], the transient polarization switching in ITO channel region can be obtained, as shown in Fig. 7(d). A polarization charge switching over \(10^{14}/cm^2\) is achieved, which contribute to the high carrier density \(>0.8 \times 10^{14}\) in ITO channel.

Here, an in-depth analysis on the charge balance of Fe-FET with FE/DIE stack as gate insulator is provided. The charge components of a metal/FE/DIE semiconductor system include: 1) hole accumulation in the p⁺ Si gate electrode; 2) negatively charged dopants in the p⁺ Si gate electrode (therefore, gate electrode can be negatively charged due to depletion); 3) FE polarization; 4) charge trapping, for example, at FE/DIE interface; 5) mobile electrons in semiconductor.

![Fig. 6](image) ![Fig. 7](image) ![Fig. 8](image)
channel; and 6) positively charged dopants in semiconductor channel (oxygen vacancies in ITO in this work). These are the charge sources providing the essential charge balance, as shown in Fig. 8. In polarization down state: 1) gate electrode is positively charged due to hole accumulation; 2) channel is negatively charged due to mobile electrons; and 3) FE/DE interface is negatively charged by charge trapping (so that DE layer is not broken down by high polarization charge density [14]). In polarization up state: 1) gate electrode is negatively charged due to dopants in the space charge region; 2) channel is positively charged due to positively charged dopants and the depletion of mobile electrons; and 3) FE/DE interface is positively charged by charge trapping. Mobile carriers and positively charged dopants in semiconductor channel are not sufficient to balance the polarization charge density $>10^{14}/\text{cm}^2$. Therefore, charge trapping at FE/DE interface must exist. And because of the charge trapping or the leakage-assisted switching mechanism [14], the memory window or threshold voltage of FeFETs cannot be simply understood by coercive voltages in P–V curve.

IV. CONCLUSION

In conclusion, a BEOL compatible ITO transistor with high-density 2-D electron gas over $0.8 \times 10^{14}/\text{cm}^2$ at the HZO/ITO oxide/oxide interface is demonstrated. Such high-density 2-D electron gas is induced by the FE polarization and can be switched on and off by FE polarization switching, resulting in high mobility, high ON-current, and high on/off ratio ITO transistors. The large tunable 2-D electron gas density by FE polarization provides a viable route to realize high charge density transistors with high on/off ratio, which can be potentially employed for superconducting devices and nonvolatile memory devices. More importantly, the ALD FE hafnium oxides and sputtered ITO thin films are fully compatible with Si CMOS BEOL process, unlike other approaches such as ion liquid gating, so that massive production is achievable.

REFERENCES

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 24,2021 at 07:59:26 UTC from IEEE Xplore. Restrictions apply.